Deep Learning Approaches for Intrusion Detection

Azar Abid Salih1*, Siddeeq Y. Ameen1, Subhi R. M. Zeebaree1, Mohammed A. M. Sadeeq1, Shakir Fattah Kak1, Naaman Omar1, Ibrahim Mahmood Ibrahim1, Hajar Maseeh Yasin1, Zryan Najat Rashid2 and Zainab Salih Ageed3

1Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq.
2Sulaimani Polytechnic University, Sulaimani, Kurdistan Region, Iraq.
3Nawroz University, Duhok, Kurdistan Region, Iraq.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

Recently, computer networks faced a big challenge, which is that various malicious attacks are growing daily. Intrusion detection is one of the leading research problems in network and computer security. This paper investigates and presents Deep Learning (DL) techniques for improving the Intrusion Detection System (IDS). Moreover, it provides a detailed comparison with evaluating performance, deep learning algorithms for detecting attacks, feature learning, and datasets used to identify the advantages of employing in enhancing network intrusion detection.

Keywords: Deep learning; intrusion detection; network attacks; intrusion datasets; security service.

1. INTRODUCTION

With the increasing occurrence of malicious attacks, the network’s security has been essential for keeping user information safe. Many prevention and detection techniques are used to secure and network service [1,2]. However, network security management and control are challenging to protect the systems,
software, devices, unauthorized data access, malware attacks, network attacks, and so on [3,4]. One of the strategies for protecting computers is building a security system to discover various types of attacks. An intrusion detection system (IDS) is an available mechanism to detect and prevent various attacks [5,6]. The concept of IDS to perform monitoring and identifying attack behavior on network traffic action [7].

A more significant gap faced by intrusion detection systems is a possibility that could be known and detect any new type of attacks. Moreover, the rapid development of information and communications technology application has created a new challenge [8,9]. With the advent of the new technology era, passing the massive amount of data from different sources on the network generated in a short time is another problem because it is not easy to detect intrusive behaviors in these large quantities of data and fast network speed [10,11].

Various methods are used to detect a suspicious attack, such as artificial intelligence and machine learning. Researchers forward to employ and investigate the deep learning method with technology development rather than traditional machine learning techniques [12-14]. Deep Learning is a modern technique for dealing with massive amounts of data that can extract useful features from big data and build models for inference, decision making, and prediction [15,16]. Deep learning approaches are applied in network intrusion detection that can uncover secret patterns and identify attacks. Furthermore, the significant point in deep learning is that it can perform feature extraction and classification tasks together [17-19]. The intrusion has different features and behaviors. One of the benefits of deep learning can automatically reduce traffic action complexity and find only relevant features among the data using feature selection and extraction [20-22]. Deep Learning has shown success in different applications. It makes daily life more efficient and intelligent, such as image processing, audio processing, video recognition, mobile devices, automation systems, robotics, etc. [23-25].

This paper discusses intrusion detection in different applications and describes the attack's type. They are also adopted in building a system for detecting malicious attacks by employing deep learning approaches. The rest of the paper is organized as follows, Section 2 Deep Learning and IDS, Section 3 Deep learning Algorithms in IDS, section 4 Discussion; finally, conclusion is presented.

2. DEEP LEARNING AND IDS

This section is broken down into four sections. The first section background for deep learning. The deep learning techniques and architecture are described in the second section. The third section discusses intrusion detection applications. The fourth section explains the network attacks, and the last section is about security datasets for computer networks.

2.1 Deep Learning

Deep Learning is advanced machine learning. It consists of multilayers and more deep layers for a Deep Neural Network (DNN) [26,27]. Deep learning is a neural network with more numbers of inputs and more complex neural layers. Machine learning is a branch of Artificial intelligence, and deep learning is a subclass of machine learning [28]. Deep learning is divided into three types of learning. The first type is supervised feature learning used for the extraction of features. These features will be supplied to straightforward machine learning methods for performing tasks such as classification and detection. The second form of unsupervised feature learning relies only on optimum feature extraction of the entire model [29,30]. The third one is a hybrid deep using generative feature learning models to enhance the training of deep neural networks [31,32].

The advantages of deep learning include the ability to solve complicated issues, which is employed in most intelligent applications, producing the best outcomes, lowering costs, eliminating the requirement for data labeling, and training a large number of parameters [33]. Nevertheless, it also has limitations of understanding well, need for clear and big data, computationally intensive, and more complex algorithms [34,35]. The primary function of deep learning in application makes decisions, predictions, and classification. The significant point in deep learning is learning features and automatic extracting features [36].

Nowadays, depending on machine learning techniques with growing internet space and different attack features occurred unsatisfactory results. Deep learning techniques have shown their efficiency for selecting features
automatically, dimensionality reduction, and classification tasks [37-39]. Deep Learning has a prominent role in application speech recognition, natural language processing, computer vision, image processing, intrusion detection, and so on [40].

2.2 Deep Learning Methods

Deep Learning is developing artificial neural networks (ANN) algorithms with many layers of neural networks [41]. The main objective of deep learning algorithms is feature learning and classification tasks [42]. Furthermore, finding correlations between features among a large amount of data. Deep learning is classified into three classes depending on architecture and techniques: discriminative is supervised, generative is unsupervised, and hybrid combining two methods, as illustrated in figure (1) [43]. In discriminative or supervised learning architectures for prediction tasks, the data are named to differentiate patterns [44]. The most popular discriminative deep learning techniques, such as a Convolutional Neural Network (CNN) this algorithm has a remarkable architecture suitable for image recognition and feature selection [43].

Unsupervised learning, also known as generative learning, employs unlabeled information; it has little training data and learns each lower layer in a layer-by-layer process [45,46]. There are several methods classified as unsupervised such as Autoencoder (AE), Boltzmann machine (BM), Recurrent neural network (RNN). The deep hybrid method is the combination of generative and discriminative methods, and it takes both advantages, such as is Deep Neural Network (DNN) and Generative Adversarial Network (GAN) [47-49].

2.3 Intrusion Detection System for Applications

There are many applications and fields faced different types of attacks such as in communication networks, Internet, Web application, cloud computing and IOT applications.

2.3.1 IDS for IOT applications

Intrusion detection is one of the leading research problems in network and computer security [50]. It is the process of monitoring and analyzing network traffic to detect malicious attacks. The intrusion detection system has an essential role in many filed such as the Internet of Things (IoT), web, wireless, and cloud [51]. IoT devices need a strong IDS to deal with the different types of threats coming from different networks. IoT as the communicating devices could reach thousands of nodes.

Fig. (1). Deep Learning Architecture [43]

Salih et al.; AJRCOS, 9(4): 50-64, 2021; Article no.AJRCOS.69657
via the internet [52,53]. There are many algorithms helps to discover different types of threats which are machine and deep learning technique to protect IoT applications. The security of devices used in many IoT applications in recent years includes smart homes, smart cities, industrial, building, retailing, and traffic [54,55]. Protecting IoT in intelligent devices needs software to capture unknown and unknown malicious attacks using different intelligent techniques [56].

2.3.2 IDS for web applications

Recently, web applications spread worldwide in different services such as shopping, bank service, and social communication [57,58]. The security of the web from various types of malicious it is needful by using anomaly detection systems. Many systems build it to secure the web, such as anomaly detection in the HTTP request parameters [59]. Simultaneously by growing internet services, the number of threats increased [60]. Although using various data sets on the attack threats that may target the web applications implemented in different intelligent techniques machine learning and deep learning, they have reported on the performance, quality, results, and protection of such attacks on their website [61,62].

2.4 Network Attacks

With expansion the communication network the world of technology need more mechanism to save systems and applications from malicious attacks. There are different ways to protect digital data from intrusion. Firstly, know information about security attack types. Secondly, security mechanism and thirdly, security services.

2.4.1 Security attacks

The detection of malicious attacks is always the primary step towards secure communication between nodes [63,64]. In everyday types of malicious attacks have been increased. There are many types of attacks classified in different cases. In general, there are two types of attacks. Firstly, an active attack tries to damage the system’s resources [65,66]. This type of attack is modifying the data stream and creating false statements such as Daniel of service. Secondly, a passive attack tries to know or use the information on the system but does not damage system resources and monitoring of transmission [67-69].

2.4.2 Security Mechanism

There are various solutions available for intrusion detection and prevention in the network.

The Different security mechanisms can be used to enforce the security properties defined in a given security policy [70-72]:

Attack Prevention: The firewall prevents attacks from the outside against the machines in the inside network by denying the attempt to contact an unauthorized person [73,74]. The authentication process usually allows the user to enter the system requires a name and a password plaintext to hide its substance [75,76].

Attack Avoidance: The encryption process disguises a message depending on some transformation rules into a format that hides its substance.

Attack Detection: The most crucial technique for protecting data and systems integrity from outside intruders is intrusion detection.

2.4.3 Security Services

Intrusion detection systems (IDS) are an effective security technology that can detect and react to the attack. It performs monitoring network traffic [77,78].

An Intrusion prevention system (IPS) is a device or software that has the working as an intrusion detection system for analyzing and monitoring network traffic and malicious attack prevention and stops the possible action of attacks [79,80].

2.5 Intrusion Detection Dataset

An intrusion detection dataset can be established by collecting network traffic features from different sources, such as network traffic flows containing information about the host, user behavior, and system configurations [81-83]. This information is required to study the attack patterns and abnormal activity of various network attacks. A massive amount of data gets produced every day, and it is essential to transmit private data securely [84-86]. It is a significant data era. The administrative organization of computer security collected various features in an extensive data set. This dataset contains a considerable number of features of different types of attacks. Deep Learning is a key for extracting and reducing
irrelevant features and decreasing data space [87-90].

The researcher has been conducting using different data sets the intelligent techniques to play an important role in developing computer security. Many security datasets used for intrusion detection classification as a normal and malicious attack depended on attack features such as KDD CUP99, NSL-KDD, CIDS 2017, Kyoto 2006+, CICIDS 2017, ECML-PKDD 2007, ECML-PKDD 2007, HTTP CSIC 2010, CTU-13, ADF, UNSW-NB15. However, the most popular datasets in the research community use KDD99 and NSL-KDD because they contain the most important features to detect attacks. Moreover, researchers' most serious difficulties obtaining real-time system traffic action [91-94].

3. DEEP LEARNING ALGORITHMS IN IDS

Deep learning algorithms by many researchers focused on IDS problems because of their ability to analyze and discover useful information from large volumes of data. Therefore, different deep learning techniques have been used for intrusion detection systems. The main objective of deep learning in building intrusion systems is extraction features and classification tasks. The most popular deep learning techniques used for intrusion detection are Autoencoder (AE), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Convolutional Neural Network (CNN), and Hybrid Deep Learning [95].

Every day the deep learning in progressive and new technique method occurs. As shown in Table 1, feature learning, classification intrusions detailed descriptive and comparative analysis of the published deep learning-based intrusion detection researches. The classification technique depended on the dataset used for training and testing the model, applied deep learning architecture.

3.1 Generative Architectures

Deep learning approaches can be applied to unsupervised learning. This is an important benefit because unlabeled data are more numerous than the labeled data.

3.1.1 Auto-Encoder (AE)

Auto-Encoder (AE) is the most method described in the literature, this type of method is used for dimensionality reduction and classification tasks. The function of this model the input encodes copy to output decoder. It is used in many applications feature compression and classification features. Several AE extensions include stacked AE (SAE), sparse AE, and denoising AE [96].

In 2020 Schwartz F. et al. [97] focused on dimension reduction to reduce complicated and reducing time for building model. An autoencoder (AE) is a deep neural network used to reduce the big data with, Autoencoder (SAE) for feature extraction to reduce the feature space. The data preprocessing stage and data normalization applied to the KDD99 data set. Furthermore, three classification algorithms are Decision Trees, Naive Bayes, and Decision Table to classify data streams. They first tested the model with all 41 features without using (AE) deep learning and second-time use feature reduction methods with five and thirteen features. The experiments showed that get the best result when used decision tree classifier with 13 features. A system evaluated depended on three criteria: the accuracy of 98.2162%, the false positives 0.0066%, and the false negatives 0.0180%.

In 2019 B. Alsughayyir et al. [98] presented AE for classification tasks. In the data preprocessing stage, the Min-Max normalization is used. This model has been applied to NSL KDD dataset for the training model. The proposed model's performance gets the best results compared to traditional machine learning techniques with an accuracy of 91.28%.

In 2018 Farahnakian and Heikkonen [99] proposed Deep Auto-Encoder (DAE) for feature learning and the softmax classifier in the last hidden layer used. The model was trained on 10% of the KDD99 dataset with all the features. The proposed model gets an accuracy of 94.71% to overcome the problem of overfitting.

In 2020 Yeom et al. [100] presented Autoencoder deep learning technique for feature extraction and classification used a random forest algorithm. This technique, by extracting some features, reduces the time and complexity. The proposed model is trained on CICIDS 2017 data set. The evaluation performance showed that the proposed AE-RF achieves an accuracy of 98%.

3.1.2 Recurrent Neural Networks (RNN)

A recurrent network is a type of ANN used for classification and regression. There are two
popular types used for RNN: Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). This type of deep learning implementing time-series data prediction. In RNN, have the edges fed into the next time step to predict. It needs to access previous information in current iterations. He was, moreover, used in many applications such as robot control, speech recognition, intrusion detection. The number of studies explored that the employed of RNN in intrusion detection gets satisfactory results [101].

In 2018, Sara et al. [102], Presented Long-Short-Term Memory LSTM using four neural networks. In this study, memory manipulations in the cells are done by gates. LSTM uses three gates: output gate, input gate, forget gate. The proposed model is applied to the CIDDS dataset. This research achieves a sufficient accuracy of 0.85.

In 2020 Al-Emadi Al. et al. [103] designed an intelligent system for cyber-attack detection using deep learning Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN). This work methodology in sequences starting from data preprocessing, feature selection, and the last step is classification attacks by deep learning. The deep learning RNNs algorithm, the Long Short-Term Memory (LSTM), and the Gated Recurrent Units (GRU) create a robust intrusion detection system. The results found that CNN has to outperform compared with RNN and other techniques with metric measurements accuracy, F1 score, recall, and precision above 97% obtained.

In 2018 Kasongo and Yanxia Sun [104] proposed a Deep Long Short-Term Memory (DLSTM) based classifier for wireless intrusion detection system (IDS). The Information Gain (IF) used as a filter select more informative features. The model is trained on NSL-KDD Dataset. The proposed model is compared with different machine learning techniques. The illustrated result showed that accuracy on validation data was 99.51%.

In 2019 Wei et al. [107] presented an optimization algorithm based on a deep belief network. This study used particle swarm optimization (PSO), genetic algorithm optimization back propagation (BP) PSO (GA-PSO) algorithm, and an artificial fish swarm algorithm. The proposed model was implemented on the NSLKDD dataset for the training and testing model. The results of the proposed model illustrated an accuracy of 83.86%.

In 2019 Dai and Pan [108] proposed an intrusion detection system based on improving Deep Belief Network (DBN) and Extreme Learning Machine (ELM) for classification. DBN-ELM method that used DBN to train features on NSL-KDD data set. The excremental result showed that the proposed model gets an accuracy of 97.82%.

3.2 Discriminative Architectures

Discriminative method denotes to a class of models used supervised learning data labeled especially in classification task.

3.2.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a discriminative (supervised) learning data labeled to classify different patterns. CNN improves the connections between DNN layers. CNNs train
multiple layers with nonlinear, fully connected networks. The hidden layers of a CNN consist of complex layers that convolve with multiplication or other product. The input CNN requires numeric [109]. Furthermore, CNN is used to extract dealing with more complex features to perform the task with better accuracy [110]. Many applications implementing by CNN, such as intrusion detection, identify the face, image feature extraction, and video analysis.

In 2019, Xiao X. and et al.[111], presented Convolutional Neural Network (CNN–IDS), one of the deep learning classification algorithms. They focused on the effects of dimension reduction for enhancing classification algorithms and reduce the model time training. The most important phase to build the model is data preprocessing in the data set. It starts by removing redundant and irrelevant features in the network traffic data. They used two-dimensionality reduction methods: principal component analysis (PCA) and auto-encoder (AE) on the KDD-CUP99 dataset. The feature with the analogy, the 41-feature dataset becomes 121 features and features assigned the values of 64, 81, 100, and 121 it needs to reduce the complexity and time model training. The experimental to evaluate the performance of the proposed shows the efficiently detects network intrusion by dimensionality reduction. AC, DR, and FAR can access 94.0%, 93.0%, and 0.5%. The second part of the study compares with traditional machine learning techniques such as SVM, Logistic Regression, Decision Tree, Naive Bayes Random Forest, and Adaboost.

In 2019 Lin and et al. [112] proposed convolutional neural networks (CNNs) with five layers network for extract features. The softmax max used for the classification of different types of attacks. The results illustrated model get high accuracy 97.53% applied on KDD99 dataset.

In 2019 Yong and Bo [113] presented a convolutional neural network. CNN improved by Batch normalization algorithm to reduce the complexity of data and increase the model’s speed in the training phase. The proposed method was applied to KDD-Cup 99 data. The results showed that the model gets high accuracy of 94.11%.

In 2019 Zeng et al. [114] proposed a system to classify and identify using several deep learning models. They adopted three deep learning models CNN, LSTM, and tacked autoencoder, to derive features from various points of view. In this app, the CNN extracted features from local features, the RNN extracted time series features, and the stacked autoencoder extracted features of the sentence. The automatic solution is working well! It currently has a perfect score on the ISCX 2012 test set. Extracting and extracting the noisiest features of an imaging feature is also a successful algorithm detection tool.

3.3 Hybrid Deep Learning

Hybrid architectures incorporate both generative and discriminative models. A hybrid deep learning model that usefully combines different deep learning methods (LSTM with GRU, BiLSTM, and CNN with other techniques). This learning under progressive and obtained the highest result various techniques use extracts features of different deep learning methods combines these features and classifies [115].

In 2018 Ludwig [116] proposed an ensemble method consists of an autoencoder, a deep belief neural network, a deep neural network, and an extreme learning machine for the classification task. The NSL-KDD dataset applied to the training model the proposed model illustrated accuracy 93%.

In 2020 Malik et al. [117] proposed Cuda-enabled is hybrid deep learning used Long short-term memory (LSTM) and Convolutional Neural Network (CNN) for efficient and timely detection of multi-vector threats and attacks. The CICIDS2017 data set used and obtained performance is 98.6% detection accuracy.

In 2020, Zhang et al. [118], Proposed an ensemble Bayesian Convolutional Neural Network to build an intrusion detection system. Both data sets, NSL-KDD and UNSW-NB15, are used to evaluate the proposed schemes. Ensemble-based detection model gets high accuracy with data set NSL-KDD in term accuracy 99.3271%.

In 2020 Atefi and H. et al. [119] proposed a hybrid classification method Deep Learning (DL) and Binary Algorithms (BA), combined for IDS. In another hand of this work introduced Deep Neural Network (DNN) and Binary Genetic Algorithm (BGA), Binary Bat Algorithm (BBA), Binary Gravitational Search Algorithm (BGSA) as best fit model to increase the rates of detection. The genetic algorithms select more than eighty features from network flow. The result displayed
Table 1. Performance of deep learning approaches for intrusion detection system

<table>
<thead>
<tr>
<th>Ref</th>
<th>Data set</th>
<th>Feature learning and selection</th>
<th>Algorithms detect attacks</th>
<th>Accuracy description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[64]</td>
<td>2020</td>
<td>KDD'99</td>
<td>decision trees, Naive Bayes, decision tables, AE</td>
<td>Best result 13 features, accuracy 98.2162, FP 0.0066%, FN 0.0180%</td>
</tr>
<tr>
<td>[65]</td>
<td>2018</td>
<td>NSL-KDD</td>
<td>AE</td>
<td>Multi-class accuracy-99%</td>
</tr>
<tr>
<td>[66]</td>
<td>2019</td>
<td>KDD99</td>
<td>Softmax</td>
<td>Multi-classification Accuracy 94.71% accuracy of 98%</td>
</tr>
<tr>
<td>[67]</td>
<td>2019</td>
<td>CICIDS 2017</td>
<td>Random forest</td>
<td></td>
</tr>
<tr>
<td>[68]</td>
<td>2018</td>
<td>CICIDS</td>
<td>LSTM</td>
<td>Accuracy 85%</td>
</tr>
<tr>
<td>[69]</td>
<td>2020</td>
<td>NSL-KDD</td>
<td>CNN RNNs</td>
<td>CNN rate for recall, F1 score, and precision of above 97%</td>
</tr>
<tr>
<td>[69]</td>
<td>2020</td>
<td>KDD</td>
<td>Information Gain</td>
<td>accuracy 99.51%</td>
</tr>
<tr>
<td>[70]</td>
<td>2019</td>
<td>KDD CUP'99</td>
<td>DBN</td>
<td>DBN with S4 get high accuracy 95.45% accuracy 82.36%</td>
</tr>
<tr>
<td>[71]</td>
<td>2019</td>
<td>NSL-KDD</td>
<td>PSO- AFSGA - BP</td>
<td></td>
</tr>
<tr>
<td>[72]</td>
<td>2019</td>
<td>NSL-KDD</td>
<td>CNN</td>
<td></td>
</tr>
<tr>
<td>[73]</td>
<td>2018</td>
<td>KDD-CUP99</td>
<td>CNN dimension reduction with PCA, AE</td>
<td></td>
</tr>
<tr>
<td>[74]</td>
<td>2019</td>
<td>KDD99</td>
<td>CNN</td>
<td>Softmax classifier accuracy 94.0%</td>
</tr>
<tr>
<td>[75]</td>
<td>2019</td>
<td>KDD CUP 99</td>
<td>CNN With Batch normalization</td>
<td></td>
</tr>
<tr>
<td>[76]</td>
<td>2019</td>
<td>ISCX 2012</td>
<td>DFR</td>
<td>accuracy 99.22%</td>
</tr>
<tr>
<td>[77]</td>
<td>2019</td>
<td>NSL-KDD</td>
<td>ensemble method - AE, DBF, deep NN, and ELM</td>
<td>precision 92%</td>
</tr>
<tr>
<td>[78]</td>
<td>2020</td>
<td>CICIDS2017</td>
<td>LSTM CNN</td>
<td>accuracy 98.6%</td>
</tr>
<tr>
<td>[79]</td>
<td>2020</td>
<td>NSL -KOD</td>
<td>Bayesian CNN</td>
<td>Accuracy 99.3271 NSL -KDD</td>
</tr>
<tr>
<td>[80]</td>
<td>2019</td>
<td>UNSW-NB15</td>
<td>DNN, with BBA, DNN with BGA, DNN with BGSA</td>
<td>Higher score DNN with ELM accuracy 99.002</td>
</tr>
<tr>
<td>[81]</td>
<td>2020</td>
<td>UNSW-CUP 99</td>
<td>GA selection</td>
<td>DL get a high accuracy rate</td>
</tr>
<tr>
<td>[82]</td>
<td>2019</td>
<td>ISCX 2012</td>
<td>DNN, and SAE</td>
<td></td>
</tr>
<tr>
<td>[83]</td>
<td>2019</td>
<td>UNSW-CUP 99</td>
<td>ensemble method - AE, DBF, deep NN, and ELM</td>
<td></td>
</tr>
<tr>
<td>[84]</td>
<td>2020</td>
<td>UNSW-NB15</td>
<td>DNN with BBA, DNN with BGA, DNN with BGSA</td>
<td>DL get a high accuracy rate</td>
</tr>
<tr>
<td>[85]</td>
<td>2019</td>
<td>UNSW-CUP 99</td>
<td>GA selection</td>
<td>Binary Classification accuracy 83.87%, Multiple Classification accuracy 84.13%</td>
</tr>
</tbody>
</table>
that the BGSA gets the best performance of the hybrid method inaccuracy 99.002, recall 99.02, precision 98.98, sensitivity 99.022%, specificity 98.984, and cost error 0.997%. The proposed model was applied to a new dataset named CICIDS2017.

In 2018, Santhosh and A. M [120] proposed the real-time IDS based on the cloud using deep learning and machine learning algorithms. In deep learning, building models using H2O and deep learning 4J libraries to classify data as binary and multinomial classes. Also, in machine learning for classification using Support Vector Machine, Random Forest, Logistic Regression, and Naive Bayes algorithms. The IDS detection 99.5% accuracy for the training phase and 83% accuracy on the test phase applied to the NSL-KDD dataset. They compared results between machine learning algorithms and deep learning, showing that the choice of deep learning for binomial and multinomial classification gets the best accurate detection and fast training model for IDS. However, use multiclass Prob, Dos, R2L, and U2R for classifying intrusion detection. The accuracy of binary classification 83.87%, and Multi classification accuracy 84.13%.

4. COMPARISON AND DISCUSSION

This paper considers implementing deep learning techniques between 2018 and 2020, as shown in Table (1), to evaluate the performance of different approaches to enhancing intrusion detection systems. Previous sections reviewed some research about deep learning methods applied to build IDS. Deep Learning is employed to improve network intrusion detection systems (NIDS) in identifying different malicious attacks.

Intrusion detection system dealing with a massive amount of features. The primary role of the deep learning method is feature learning by reducing the complexity of big data sets. Furthermore, data preprocessing feature extraction is not used in deep learning. The AE generative model has been primarily used for feature learning with high accuracy. The performance of the classification task using deep learning techniques achieved high detection accuracy. The RNN is mainly used as a classification for different types of attacks that obtained high results.

The hybrid deep learning and called ensemble learning approaches are a progressive method, and it takes excellent properties of each group of the algorithm because intrusion detection faced many cases problem with dealing different big data, so by combining different algorithms could ability fill the gaps of model and get the best results. The comparison among different deep learning techniques is conducted to show the efficiency of deep learning in intrusion detection. On the other hand, deep learning takes a long time in the building model's training phase and needs high machine storage. Deep learning displays substantial advantages in feature extraction. It has been widely used in the field of feature selection and gradually replaced traditional machine learning algorithms. The enhancement of the intrusion detection system depended on detection and classification accuracy. In evaluating the performance of deep learning algorithms based on different metrics, most of the researchers focused on accuracy as the primary metric.

In this paper, the comparison is performed in the data set, feature learning techniques, deep learning algorithm. This study aims to show the performance of different profound learning algorithms results is given in Table 1.

5. CONCLUSION

Deep learning algorithms are highly effective in developing an intrusion detection system (IDS) for detecting different types of attacks. The main objective of using deep learning methods can be used in anomaly detection for both processes dimensionality reduction and classification tasks. Furthermore, it performs better and deals with complex big data sets than traditional machine learning algorithms. This paper reviewed many works and concluded that the hybrid deep learning method is increasingly employed to detect threats with high accuracy.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

2. Hassan RJ, Zeebaree SR, Ameen SY, Kak SF, Sadeeq MA, Ageed ZS, et al., "State of art survey for iot effects on smart city technology: Challenges, opportunities, and

108. Liang D, Pan P. "Research on intrusion detection based on improved DBN-ELM," in 2019 international conference on communications, information system and computer engineering (CISCE); 2019:495-499.

© 2021 Salih et al.: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/69657