Trotro Pass: Ghanaian Commercial Vehicle Passenger Accounting System

B. Kommey1*, H. Maazu1, A. S. Adjei1 and J. Issah1

1Department of Computer Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, 00233, Ghana.

Authors’ contributions

This work was carried out in collaboration among all authors. Author BK came up with the idea, designed the study, the system architecture, system block diagram and system work flow. He also wrote the abstract, introduction, methodology and the conclusion of the manuscript. Author HM wrote the C code for the embedded system hardware and documented it for the manuscript. Author ASA designed and programmed the object oriented graphical user interface for the system and wrote the literature review. Author JI managed the hardware setup, software setup and well as evaluation and data analyses of the study. He also wrote the section “Test and Evaluation”. All authors read and approved the final manuscript.

ABSTRACT

Commercial transport in Ghana is generally unsupervised; vehicle owners and transport managers alike lack tools to properly monitor and track the performance of drivers. Usually, fixed amounts are given to drivers as a daily goal, anything more than that is payment for the driver’s services. This fixed amount is usually based on intuition and not on statistical data that at least estimates how much a driver makes in a day of commute. This project is intended to give commercial vehicle managers the ability to track location of vehicles and cumulatively estimate how much money is being made, up until end of a day of commute. This is achieved through a design that makes use of a distributed collection of embedded systems in the vehicle, equipped with GPS and cellular data connection, which would transmit and store information on a server. A user-friendly application would then query and display in real time the location of vehicles and estimate amount made so far.

*Corresponding author: E-mail: bkommez.coe@knust.edu;
2.1 Seat Occupancy

Attempts at sensing the presence of vehicle occupants using pressure sensors [4,5], occupant classification using stereovision [6] and optical sensors [7,8] have been reported. These methods, optical and weight-based have been proven unsuitable for dynamic observations whereas capacitive sensors have proven useful and advantageous [9]. Fig. 2 presents a simplified model of the capacitive sensor setup and its capacitance to the vehicle chassis, which serves as ground. It is obvious from this model that a human, made of 72% water [10], sitting on the seat would change the dielectric makeup of capacitance C2 between sensor “S1” and vehicle’s roof “GND”, increasing the amount of time it takes capacitance C2 to charge and discharge.

This configuration is approximated as a parallel plate capacitor model assuming the charge density on the plates are uniformly distributed and that the only capacitance exists between the sensor and the chassis as indicated [11]. Below is a simplified equivalent circuit diagram,
including the stimulus and respond pins, \(V_S \) and \(V_R \) respectively.

The capacitance of two plates in parallel is given by:

\[
C = \frac{\varepsilon_0 \varepsilon_r A}{d}
\]

Where:

- \(A \) = plate area in meter squared
- \(d \) = distance between plates in meters
- \(\varepsilon_0 \) = permittivity of free space = \(8.85 \times 10^{-12} \) F/m
- \(\varepsilon_r \) = relative permittivity of the dielectric substrate between the plates.

Fig. 1. Passengers on route between stops [1]

Fig. 2. Model of the capacitance between sensor plate and chassis [11]

Fig. 3. Circuit representation of the capacitive seat sensor [11]
A, d and ε_a are constant thus only ε_r can change the capacitance. One thing to note is the fact that parallel plate capacitance has electric fields that are not only limited to sensors but can bend outwards, and is a phenomenon called fringing. This is corrected by increasing A by 13% to account for its effects [12]. An effective dielectric constant (ε_{eff}) is derived by approximating the capacitive sensor as a microstrip transmission line which consist of a conductive strip of width 'W' (sensor diameter) and a wider ground plane (vehicle’s chassis), separated by a dielectric substrate of thickness 'H' (area between electrode and ground). The effective dielectric constant (ε_{eff}) is less than the substrate’s dielectric constant since a part consists of air and can be approximated as follows [13]:

\[
\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(1 + \frac{H}{W} \right)^{-1} + 0.04 \left(1 - \left(\frac{W}{H} \right)^2 \right)
\]

(3)

When $\frac{W}{H} < 1$:

\[
\varepsilon_{eff} = \frac{\varepsilon_r + \varepsilon_a}{2} \left(1 + 12 \frac{H}{W} \right)^{-1}
\]

(4)

The time constant τ on C_{total}

\[C_{total} = C_1 + C_2 \]

(5)

\[C_{total} = \varepsilon_0 A \left(d_1 \varepsilon_r + d_2 \varepsilon_{eff} \right) \]

(6)

Where ε_{eff} varies depending on whether a human who is made up of 70.4% water [10] is occupying a seat or not.

3. MATERIALS AND METHODS

3.1 Trotro Pass System Architecture

The system architecture is best described in Fig. 4. The vehicle’s seats are fitted with aluminum foil plates which form the capacitive sensing plate. The master Seat Occupancy Detection Unit (SODU) collects all relevant seat information from “slave” SODUs and transmits the data via the internet to the backend server which then processes the information and makes it available for viewing on a mobile device.

3.2 Seat Occupancy Sensing

With the help of the flow chart in Fig. 5. We recap the sensing technique presented by [11] with some modifications. The stimulus pin is simply set to a logical high and a response is awaited. Once the response pin is high, the stimulus pin is set to low and a response is awaited. Once response pin is low, the timer is stopped and its value recorded. This is repeated several times. This repetition is done to counteract a problem initially faced which was due to the sporadic changes in recorded values. The improved sensing technique (Fig. 6) averages the recorded values. A ‘seat mask’ which is simply a sequence of bits representing each seat (i.e. a ‘1’ a bit position of the ‘seat mask’ means seat one is occupied.)

With a time constant:

\[\tau = RC \]

(7)

It is well documented that by doubling the capacitance in a simple RC circuit like the one shown in Fig. 3, the time constant is also doubled. Since we are dealing with a moving car it is to our advantage that the time constant be kept small enough to accelerate the sensing process and large enough to be discernible by an otherwise slow and inexpensive embedded microcontroller. Assuming that a time constant of RC is desired, given a timer/counter count register B bits wide, it is noted that the required frequency for the counter to overflow in $2\times5\tau$ seconds (i.e. capacitor charges up to a logical high and down to a logical low per the algorithm presented above) is given by the equation below.

\[f = \frac{2^{B-110\tau}}{10\tau} \]

(8)

This would hold for an ideal case, but unfortunately have overheads when invoking and returning from functions and interrupt services. These delays are considered when programming the microcontroller.

3.3 The Seat Occupancy Detection Unit (SODU)

Key components suggested by our trotroPass system architecture include:

- Microcontroller
- GPS Module
- GSM Module
- Zigbee Module
Fig. 4. Trotro pass system architecture

Fig. 5. Seat occupancy sensing algorithm
The complete system is to be powered via the in-vehicle cigarette plug outlet which has a typical maximum rating of 12V and 3A. Due to the limited availability and cost of obtaining certain evaluation and breakout boards our prototype design is limited to that of one “master” SODU.

3.4 Microcontroller

Inexpensive microcontrollers such as those from the Atmel Attiny line of microcontrollers should suffice for the passenger accounting system but for this implementation, the Atxmega256A3BU (Evaluation Board) microcontroller is employed. The key features of this microcontroller are listed below:

- USART for simultaneous GPS, GSM and ZigBee communication.
- It also has 47 programmable I/O pins, more than needed for.
- It also has 7 16-bit Timer/Counters of which just one is needed for timing the RC circuit formed by the sensor setup.

Using the Evaluation board as a template, all unnecessary components to the design are stripped away. A discussion of the proposed microcontroller schematic is presented in Fig. 8. The microcontroller operates on 3.3V voltage supply thus the need for a voltage regulator. In this case, an NCP1117LSP as shown in Fig. 7.

A Low-dropout regulator is used, which is capable handling input voltage of up to 18V while giving an output of 3.3V. Pad “PS” is connected to the positive terminal of the vehicle cigarette plug and pad GND is connected to its negative terminal.

In Fig. 8, the schematic of the microcontroller is presented along with the light indicators for determining the state of the embedded software. LED1 serves the purpose of indicating if all driver initializations have been completed. LED2 is planned as a toggling indicator of microcontroller activity.

On the right of the microcontroller is the USB mini, A connector for reprogramming the microcontroller, will persist beyond production phase in case updates to software is needed. The flash mode is triggered using push button “S1”.

Below the microcontroller are the decoupling (LDO regulator to microcontroller) capacitors. A VCC to AVCC connection is made through an inductor to power analog circuitry within the microcontroller.
Fig. 7. MCU power supply

Fig. 8. Trotro pass MCU schematic

Fig. 9. GSM power supply
3.5 GSM Module

It is preferable to implement the system with a 3G module, but due to cost and accessibility we default to the more common sim900 GPRS enabled module. Since the board is to be powered by a DC to DC converter (automotive), it is advised that our efforts be guided towards achieving a noise suppressive design in order to decrease the risk of degradation of the RF performance of the sim900 due to switching noise. The recommended design per sim900 user manual is depicted in Fig. 9.

4. RESULTS AND DISCUSSION

4.1 Seat Occupancy Testing

Testing was split into two stages. First, seat occupancy sensing with a setup depicted in Fig. 10. With an array of resistors fixed in a breadboard a resistance within the range of 1MΩ to 20MΩ is chosen to be connected between the stimulus and response pins; this helps in regulating the sensitivity and time required for charge. The laptop powering the microcontroller is kept plugged in. This makes the reference ground the building itself. The Timer/Counter clock is then set to a frequency of 2MHz, after which, the CNT register is sampled at every sensing iteration. With 4MΩ of resistance selected, it is discovered that with no human occupant, the CNT register had a value averaging about 33. Upon occupying the seat, counts as high as 330 were observed while averaging in the range 100 to 300. The threshold count is then set to 100 and six different individuals test the occupancy by sitting on the seat. Our system recognized all occupants.

4.2 Trip Distance Test

In the second stage of testing, seat occupancy is simulated using 4 capacitors (two per seat) while tracking the distance travelled and amount paid via an android application. Applying the same sensing algorithm, a threshold was set for when two capacitors were connected as opposed to one, thus, interpreting two connected capacitors as an occupied seat as opposed to one capacitor (i.e. empty seat).

At the instance this screenshot was taking, the app was reporting a cumulative trip distance of 170m, an amount made of GHS0.389 (rate of GHS0.8 per 350 m) and 2 seats occupied (i.e. all 4 capacitors were connected).

Fig. 10. Trotro pass sensor setup testing

Fig. 11. Trotro pass trip distance testing

4.3 Evaluation

Fig. 12 depicts the planned trips for trip distance testing. The plan was to move the vehicle in 4 trips;

1. Trip 1: activate one seat and move 160 m
2. Trip 2: activate two seats and move 220 m
3. Trip 3: deactivate all seats and move 210 m
4. Trip 4: activate one seat and move 300 m
Table 1. Summary of expected and reported trip distance

<table>
<thead>
<tr>
<th>Trips</th>
<th>Google distance</th>
<th>Seat mask</th>
<th>Seats occupied</th>
<th>Trip distance</th>
<th>Application Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip 1</td>
<td>160 m</td>
<td>000000001</td>
<td>1</td>
<td>160*1= 160 m</td>
<td></td>
</tr>
<tr>
<td>Trip 2</td>
<td>220 m</td>
<td>00000011</td>
<td>2</td>
<td>220*2=440 m</td>
<td></td>
</tr>
<tr>
<td>Trip 3</td>
<td>210 m</td>
<td>00000000</td>
<td>0</td>
<td>210*0=0 m</td>
<td></td>
</tr>
<tr>
<td>Trip 4</td>
<td>300 m</td>
<td>0000010</td>
<td>1</td>
<td>300*1=300 m</td>
<td>900 m</td>
</tr>
</tbody>
</table>

Table 1 summarizes the planned trips. A total distance of 805 m was reported (i.e. 89.44% of the expected 900 m of the total trip distances).

5. CONCLUSION

The feasibility of such a passenger accounting system using seat occupancy was proven. With regards to our objectives, we have been able to record and keep track of the vehicles location and total trip distance for every occupied seat connected to the system. Our app can dynamically listen for changes to the vehicles state in the database while presenting to the vehicle owners the location of vehicles and cumulative estimate of the amount of money made (89.44% accuracy). A major challenge was the delay in transmission. This problem may be attributed to the slow 2G network provided by the GSM module. Modules with 3G or better network support are highly recommended. Delays in transmission could also be improved with unreliable transmission protocols since the generation as many “snapshots” of the vehicle as possible is of greater concern to us. Perhaps non-volatile memories could be used for storing data that may have been lost due to the lack of cellular network coverage, for retransmission.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2019 Kommey et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.