Knowledge Based Performance Evaluation and Predictive Model for Undergraduate Students

Ayodeji O. J. Ibitoye1†, Bunmi Borokini1 and Jesujoba O. Alabi1

1Department of Computer Science and Information Technology, Bowen University, Nigeria.

Authors’ contributions

This work was carried out in collaboration between all authors. Author AOJI designed the study, performed the statistical analysis, and wrote the protocol. Author BB wrote the first draft of the manuscript. Authors AOJI, BB and JOA managed the analyses of the study. Authors BB and JOA managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2018/v2i330074

Received 06 November 2018
Accepted 21 January 2019
Published 09 February 2019

ABSTRACT

In educational data mining, the process of analysing and predicting from a pool of acquired data is a big challenge due to the influence of behavioural, environmental, parental, personal and social traits of students. While existing education predictive systems have used patterns generated from mined common factors to predict student performance based on subject, faculty, and grade amongst others, explicit traits, which defines a student are often neglected. Thus, such existing models are too general for specific and targeted analysis in more recent times when predictive features are although common but in real essence unique to individual students to a certain degree. Here, a Self-Academic Appraisal and Performance Predictive (SAAPP) system was developed to analyse and predict the overall performance of students before the expiration of their course duration. The inherent knowledge driven model analyses common available predictive internal and external factors, with probabilistic analysis of student academic history and pending courses. The system then builds a personal data centric system for individual student through a

*Corresponding author: E-mail: ayodeji.ibitoye@bowenuniversity.edu.ng
1. INTRODUCTION

Over the years, many researches have been carried out to find out factors affecting students' performances at different institutions of learning. Summarily, the factors could be social, economic, psychological, environment and personal [1]. No doubt, the propensity of these factors varies from one individual or institution of learning to another. While considering the benefits of student performance evaluation to teaching and learning, the internal factors, which involves student and his relationship with the learning environment, alongside external factors, which refers to what happens to the student outside the learning environment [2] has been regarded for long as an important research area for student academic performance prediction. Thus, several research questions in education seek to predict student performance centred upon a set of self-regulating variables, these variables may include high school information, background information, parent information, or scores on previous test [3]. Some other approach concentrates' on estimating the final grade of a student why using the current available result. Thus, predicting student results is really a process of trying to determine the eventual academic success or risk of a student in an institution [4]. Predominantly, the development of predictive system for students' performance evaluation has been through the data mining techniques. Data mining techniques are used to extract useful information and patterns from educational database in predicting student's performance [5]. This process plays a key role in learning analytics or educational data mining. Educational data mining (EDM) as an emerging discipline focuses on applying data mining tools and techniques to educationally related data. [6]. The EDM Classification is used to categorize the students in order to shape their learning styles and inclination. This process seek to find ways to make advantageous use of the enlarging amount of data about learners to understand the process of learning and the social and motivational factors surrounding learning. While several approaches through data mining have focused on pattern analysis to define and predict student’s performance for effective instructional interventions by the instructor to the student [7], to the best of our knowledge, no system exist for student’s self-appraisal and evaluation towards performance prediction using intrinsic and extrinsic predictive factors. Hence, in the scope of this research, by trying to understand distinct learners, a computational approach that combines data and knowledge inherent therein is used to evaluate a student performance towards a more accurate prediction. Thus, in section 2, related works in educational data mining are presented, in section 3; the developed self-appraisal model is discussed with summarized experiment and evaluation in section 4. In section 5, the research was concluded.

2. RELATED WORKS

Since Educational Data Mining (EDM) has emerged as a research area in recent years for researchers from different and cognate research areas all over the world, its processing application does not differ much from other areas of Data Mining, like business, genetics, medicine, etc. [8]. The data used in the mining exercise may be personal, academic or both. The essence is to understand student’s behaviour, assist instructors, improve teaching, social infrastructures and program, evaluate and improve curriculum and learning processes. The application of data mining in education as discussed [9] is used to extract meaningful information from huge data set for decision making processing through analytical tool views. The dataset always contain different influencing factors that determines the performance class of a student after mining. Raychaudhuri et al. [10] presented a study that evaluates the impact of students’ attendance in class, family income, parent’s level of education, availability of trained teachers in school, sex of the student and the distance of the student home from school as factor to determine student performance. Christiana [11] also identified interruption of electricity supply, overcrowded lecture rooms, unfavourable learning environment, incessant strike, and closure of school among others as institutional factors that affect performance of students in some Nigerian Universities. While staffing, teaching and learning materials,
motivation, attitude of teachers were identified as institutional factors that determine students’ performances in mathematics [12], learning preference, age, gender and entry qualification was also seen as a factor that affects students’ performance [13]. With researchers having these factors in mind among others, a number of models have been developed to predict student performance. A data mining approach has been adopted and applied by Anwar and Naseer [14] to discover students’ performance models in supervised and unsupervised assessment tools of a course in an engineering degree program. In addition, a validated set of mathematical models to predict student academic performance in engineering dynamics was developed by Huang [15]. The study also showed that radial basis function (RBF) network models and support vector machine models have better generalizability than multiple linear regression (MLR) models and multilayer perceptron (MLP) network models. By using association rule mining, [16] suggested a method of evaluation of student’s performance. Ahmad [17] proposed a framework for predicting students’ academic performance of first year bachelor students in Computer Science course. The students’ demographics, previous academic records, and family background information were the factors considered for the study. Decision Tree, Naïve Bayes, and Rule Based classification techniques were applied to the students’ data in order to produce the best students’ academic performance prediction model. Osmanbegović and Suljić [18] applied different data mining algorithms on preoperative assessment data to predict students’ success in a course. From the research, it was discovered that Naïve Bayes classifier outperforms prediction tree and neural network model. Another comparative study on the precision of Decision Tree and Bayesian Network algorithms for presaging the academic performance by [19]. In this analysis, it was discovered that the Decision Tree is 3-12% more precise than the Bayesian Network. In addition, a multi agent data mining was proposed by Abdullah et al. [20] to predict the performance of the students based on their data with high precision of prognostication and provide an aid to the weaker students by optimization rules. However, the existing methods have been applied on a collective dataset of all students wherein the unique or distinct behaviour of a student alongside his academic history among others are relatively not considered. Consequently, in section 3, the self-appraisal and performance predictive model is presented.

3. THE DEVELOPED SAAPP MODEL

In this era, it is necessary for a modern day higher institution to have systems to store student’s information. This database always contain useful knowledge that can be extracted for effective predictions and decision-making. However, for students’ performance evaluation and prediction, most of the used dataset hides detailed information about key performances indicators of students with available dataset mostly relying on previous academic performance. Since, certain predictive factors like family size, gender, productive time, food habit, academic strength and weaknesses are confidential and sensitive attributes, they are not often allowed access for performance prediction processing. Here, the developed SAAPP model for student’s self-appraisal and performance prediction is a dual but parallel level prediction and performance evaluation algorithm. Initially, the predictive metrics from the student are fed into a rule based decision support expert system to determine the performance class of a student. The developed SAAPP is domain-specific, which depends on knowledge base and reasoning algorithm. Thus, to enhance decision-making, its knowledge base consisting of IF-THEN production rules, which is used on the predictive metrics supplied by students to define their performance class. Answers to each of these corresponding metrics, whose samples are presented in Table 2 are weighted on a scale of one (1) or five (5) in order to obtain the likelihood performance class of a student. In the process, the identification number of the student is used to retrieve the academic history of a student before a probabilistic calculation is done on the remaining courses to graduation while using the present cumulative grade point average (CGPA) as bases. Thus, a predictive CGPA is obtained through Grade Point (GP) randomization for different Course Unit (CU) using the equation 1:

$$c_{gpa} = \frac{CTQP + RQP}{CTCU + RCU}$$ \hspace{1cm} (1)

Where, $CTQP$ is the Current Total Quality Point, RQP is the Remaining Quality Point for the student, $CTCU$ is the current Total Credit Unit while RCU is the Remaining Credit Unit. Here, Quality points (QP) are derived by multiplying the Credit Units (CU) for a course by the Grade Point (GP) earned by the student in that course. In Table 1, marks and grade point are represented.
Table 1. Marks and grade point analysis

<table>
<thead>
<tr>
<th>Mark/Score</th>
<th>Grade Point (GP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 – 100</td>
<td>4</td>
</tr>
<tr>
<td>60 – 69</td>
<td>3</td>
</tr>
<tr>
<td>50 – 59</td>
<td>2</td>
</tr>
<tr>
<td>44 – 49</td>
<td>1</td>
</tr>
<tr>
<td>0 – 44</td>
<td>0</td>
</tr>
</tbody>
</table>

E.g. If a student earns a CTOP of 40 for 12 CTCU, while the most optimal RQP is 45 for 13 RCU, His CGPA = \((40 + 45) / (12 + 13) = 3.4\)

At the end, the most optimal grades that will earn a student the most excellent graduation point is presented as output alongside its recommendation. In Fig. 1, the earlier processes are further illustrated.

From Fig. 1, each student supplies the required confidential academic predictive metrics through the mobile application. These predictive metrics are categorised into emotional, environmental and learning factors. Here, sample of some of the metrics and possible values that a student can supply is presented in Table 2.

The scores obtained from key confidential performance factors from student alongside the academic performance predictive processing are further subjected to If then rules in order to make concise recommendation for student. Each rule takes the form of: IF <requirement> THEN <outcome>. Where requirement describes the predictive characteristics of student’s performance class, the outcome represents the most suitable recommendation for each class of student based on the total score obtained after the analysis via the educational data mining (EDM) database. The EDM databases contains patterns, which have been trained over a period via machine learning. It also has the capacity to adapt to changing parameters. Overall, the developed system provides mobility for student’s self-appraisal, evaluation, academic result prediction and possible recommendation. Unlike existing systems, which are not available to student but mainly used for general performance evaluation, predictions and decision-making. With the accurate estimation of students’ grades, being depended on the present result and its respective future courses, in the selection of next term courses, here, the method relies on the performance that the students achieved in previously taken courses. Although, for the purpose of recommendation, a random calculation for the most optimal possible grade at the end of course duration is also performed. A unique aspect of the model is that the obtained results are specific to each student-course tuple, which creates a personalized degree pathway to facilitate successful and timely graduation.

4. EXPERIMENT AND EVALUATION

By considering the predictive metric alongside academic record of randomly selected students, we experimented to discover the accuracy rate for the developed predictive model, here; accuracy is defined in terms of the most optimal potential obtainable final CGPA. In addition, the role of predictive factors on the academic performance of students is considered. However, initially, the usability degree for which the developed mobile application can be used to achieve quantified objectives is determined. The outcome is presented in Fig. 2.

![Fig. 1. SAAPP model](image-url)
Table 2. Sample predictive metrics and possible values

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Student gender</td>
<td>Male or female</td>
</tr>
<tr>
<td>Fh</td>
<td>Food habit of the student</td>
<td>Picky, not picky; Once, twice, thrice or more</td>
</tr>
<tr>
<td>Fs</td>
<td>Family size of the student</td>
<td>1, 2, 3, 4, > 4</td>
</tr>
<tr>
<td>Ps</td>
<td>Parent status of the student</td>
<td>Divorced, separated, single parent, married</td>
</tr>
<tr>
<td>Pai</td>
<td>Parent annual income</td>
<td>Very poor, poor, medium, high</td>
</tr>
<tr>
<td>Meq</td>
<td>Mothers education qualification</td>
<td>No form of education, primary education, secondary education, higher education</td>
</tr>
<tr>
<td>Feq</td>
<td>Fathers education qualification</td>
<td>No form of education, primary education, secondary education, higher education</td>
</tr>
<tr>
<td>Conc</td>
<td>Level of concentration</td>
<td>20%, 40%, 60%, 80%, 100%</td>
</tr>
<tr>
<td>Retn</td>
<td>Level of Retention</td>
<td>20%, 40%, 60%, 80%, 100%</td>
</tr>
<tr>
<td>Comp</td>
<td>Level of Comprehension</td>
<td>20%, 40%, 60%, 80%, 100%</td>
</tr>
</tbody>
</table>

Based on randomly selected number of students across levels, in Table 3, we presented the current average CGPA, average percentage increase and drop in CGPA for our respondents. Based on the marks and grade point analysis as illustrated in Table 1, 210 students were crossed examined. The accuracy rate for the proposed algorithm in relevance to the predictive metrics as presented in Table 2 is 84.5%.

Later, we evaluated the influence of Emotional Factors, Learning Factors, and Environmental Factors on student academic performance based on the selected predictive metrics. The result obtained as illustrated in Fig. 3 shows that emotional factors, with 64%, has much influence on the majority of our respondent while learning factors follows with 23% while the environmental Factor (13%) is the least.

Table 3. Average student performance rating

<table>
<thead>
<tr>
<th>Level</th>
<th>Percentage number of student</th>
<th>Average CGPA</th>
<th>Average % CGPA increase</th>
<th>Average % CGPA drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 L</td>
<td>55</td>
<td>2.89</td>
<td>86</td>
<td>14</td>
</tr>
<tr>
<td>200 L</td>
<td>43</td>
<td>3.0</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>300 L</td>
<td>62</td>
<td>2.58</td>
<td>43</td>
<td>57</td>
</tr>
<tr>
<td>400 L</td>
<td>50</td>
<td>2.35</td>
<td>29</td>
<td>61</td>
</tr>
</tbody>
</table>
Fig. 3. Predictive metric influence rate on students

5. CONCLUSION

With the rapid increase of data in educational environment, educational data mining as emerged as a developing tool for analysing the unique types of data that come from educational settings. Here, the educational data mining students' performance is predicted based on the confidential criteria and academic record, using a rule based decision support expert system and mathematical distribution. The focus is to go beyond descriptive statistics and reporting on what has happened through collective data mining to building a personal data centric system for individual student through a decision support expert system and a probabilistic optimal grade point analysis. Overall, by combining predictive metrics with student academic records of accomplishment, an effective recommendation can be provided to students across levels. This will serve has guide to students on how to achieve excellence within the course duration. In future, we hope to apply ensemble machine learning models on acquired dataset.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

15. Huang S. Predictive modeling and analysis of student academic performance in an engineering dynamics course; 2011.

